
Idyll: A Domain Specific Language for the Rapid Development
of Interactive News Articles

Matthew Conlen
University of Washington

Seattle, WA
mconlen@cs.washington.edu

Jeffrey Heer
University of Washington

Seattle, WA
jheer@cs.washington.edu

ABSTRACT
It is becoming increasingly common for news outlets to publish
rich, interactive digital stories. Often referred to as interactives,
these stories have the potential to engage a large audience, but
are expensive and time consuming to produce. The custom code
required for an interactive — code that is often developed by a
non-expert programmer under the stress of a deadline — can be
error prone and suffer from performance problems, in addition to
being difficult to understand and hard to reuse. In this paper we
introduce Idyll, a compile-to-the-web language for creating interac-
tive narratives. Idyll combines a human readable markup language
with a framework for embedding reactive JavaScript components
in-line with text. Drawing on experiences with newsroom graphics
production, Idyll distills a set of best practices for creating and
deploying interactive stories to the web. The goal of the project is
to accelerate the production of interactives by reducing the amount
of custom code required to create them. It also looks to enable a
closer collaboration between technical and editorial contributors,
and encourage the development of JavaScript components that can
more easily be reused across articles.

KEYWORDS
interactivity, data visualization, tools for journalism

ACM Reference format:
Matthew Conlen and Jeffrey Heer. 2017. Idyll: A Domain Specific Language
for the Rapid Development of Interactive News Articles. In Proceedings of
Computation + Journalism Symposium, Chicago, Illinois, USA, October 2017
(C+J 2017), 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Publications like The NewYork Times,Washington Post, The Guardian,
and FiveThirtyEight are known for producing high-quality multime-
dia narratives. Often referred to as interactives, these stories have
the potential to engage a large audience, but are expensive and time
consuming to produce.

In order to add interactive elements to an article, custom HTML,
CSS, and JavaScript code needs to be written. This use of custom
code can clash with the typical process of publishing an article,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
C+J 2017, October 2017, Chicago, Illinois, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

which involves entering text and images into a content manage-
ment system (CMS). Some CMSs allow custom code to be added
to posts directly, but this is a tedious and error-prone method of
embedding code and so is usually undesirable. Instead, in order
to support publication of interactives many newsrooms either (1)
use an <iframe> tag to insert the code, or (2) develop a completely
separate page that lives outside of their existing CMS.

There are problems with both of these approaches. Embedding
interactive content using an iframe narrows the design possibilities
afforded to the embedded content. Content that has been included
in a page via an iframe cannot interact with text on the containing
page, and requires additional code in order to proxy events from
the top level page [13].

Maintaining a separate public facing page allows for more flexi-
bility in design, but adds an additional technical burden. It also adds
a new problem: because the CMS is eschewed, article copy needs to
be inserted directly into HTML. This makes it more difficult to edit
and make changes to the text, and also makes non-technical (edito-
rial) staff reliant on those with programming knowledge, instead
of being empowered to make text updates directly.

The custom code required for the interactives is often developed
by non-expert programmers under the stress of a deadline. Because
of this, the resulting web pages can suffer from performance issues,
and the code itself may be difficult to understand and hard to reuse
across articles. In order to improve the code quality, many news-
rooms create internal frameworks that help to structure common
tasks. These frameworks require a large up-front investment in
development time, and also require maintenance over time as tools
and techniques change.

In response to these issues, we created Idyll, a markup language
designed for authoring interactive narratives. Idyll combines a hu-
man readable markup language with a framework for embedding
reactive JavaScript components in-line with text.

The project attempts to accelerate the production of interactives
by reducing the amount of custom code required to create them.
Drawing on experiences with newsroom graphics production, Idyll
eliminates the need for a large class of boilerplate code, and helps
users adhere to a set of best practices for creating and deploying
interactive stories to the web. It also hopes to enable a closer collab-
oration between technical and editorial contributors, and encourage
the development of JavaScript components that can more easily be
reused across articles.

2 RELATEDWORK
Many projects attempt to make it easier to write clean text markup
and publish it as a static web page. For example, Jekyll [1] is a
project that allows users to write plain text or Markdown [7] files

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

C+J 2017, October 2017, Chicago, Illinois, USA M. Conlen et al.

and deploy them to the web. The tool will take in a Markdown file,
convert it to an HTMLweb page and publish it as a blog entry. These
tools typically do not provide a mechanism that allows JavaScript
to be tightly integrated with the text.

Visdown [8] extends the idea of compiling Markdown to HTML
pages by allowing authors to specify data visualizations in their
markup. A user can provide a declarative Vega-Lite [11] specifica-
tion directly in the Markdown file, and this is used to render a chart
in the final markup.

Bret Victor has written persuasively in favor of adding certain
types of interactivity to writing that would traditionally be pre-
sented as static text [14, 16]. His essay Explorable Explanations [15]
illustrates some of the types of interactions that we hope to enable
with Idyll. Victor released a JavaScript library, Tangle [17], that
helps users add reactive variables to their documents. Chris Olah
has written on using interactivity to explain complex topics, sug-
gesting that a more interactive publishing platform could expedite
the dissemination of new research ideas [9].

The typical process for creating interactive documents involves
hand-writing a lot of custom JavaScript and HTML. It can quickly
become difficult balancing the narrative portion of the project with
the nitty-gritty details of code. To this end, The New York Times
developed ArchieML [12], a markup language designed to make it
easy to pull text into JavaScript code. A core idea with ArchieML is
that code and text should be separated because they deal with very
different concerns. Text needs to be edited for content and clarity,
often by someone who doesn’t care to look at code. Developers
will need to integrate that text with their code at some point, but
typically aren’t concerned with grammar while they are writing
JavaScript.

While ArchieML makes it easy to pull text into code, Idyll makes
it easy to include JavaScript components in text. With this approach
the relationship between code and text becomes much easier to
reason about from an editorial perspective, and it becomes feasible
to make nuanced changes to where components appear in text and
how they interact with the page. It also eliminates the need for a
large class of boilerplate code that binds JavaScript functionality to
specific locations in the web page. With Idyll’s approach the process
of including an interactive component in text becomes much closer
to, say, using a CMS to embed an image in a post.

Another project that addresses combining code and data with
text is Stencila [5]. Stencila allows users to write text in a “what
you see is what you get” (WYSIWYG) style text editor, and embed
executable code cells in the text. The project focuses on streamlining
the process to publish reproducible research, and uses ideas from
“computational notebooks” such as Jupyter [10].

Idyll is not the first attempt to design a domain specific language
(DSL) to solve a problem that newsrooms face. D3 [6] is a DSL
that allows users to quickly create data visualizations inside of a
JavaScript application. PersaLog [4] is a DSL for adding personal-
izations to news articles. Idyll attempts to enable a more generic
type of customization than PersaLog, and considers documents in
a more structured manner than D3. For example, a user might use
Idyll to easily embed a visualization created with D3 in their article.

3 USAGE SCENARIOS
The section presents scenarios of envisaged usage. These exam-
ples do not encompass all possible uses of Idyll, however they are
illustrative of the types of workflow that the tool enables.

3.1 The Newsroom Developer
Consider a newsroom developer tasked with building an interactive
feature for an upcoming article. She is provided a text document
that contains the final edited copy for the article, and needs to
transform this into a standalone web page that can be published
on a static web host. She also needs to add a custom chart to the
article, along with a button that will toggle the mode of the chart
when clicked.

The first thing the developer does is copy the text from the
provided document and paste it into an Idyll markup file. She con-
figures Idyll to open the markup inside of an HTML template that
contains the organization’s logo and branding.

At this point the developer is ready to start writing code. She
runs the command to start Idyll, causing the HTML page to be
opened in her web browser. She modifies the markup file to include
following code:

[var name:"mode" value:1 /]

[CustomChart mode:mode /]
[Button onClick:`mode = 1 - mode`]

Toggle Mode
[/Button]

This code creates a variable mode that toggles between 0 and 1
when a button is clicked. It also instantiates a component called
CustomChart that accepts the mode variable as an input parameter.

She then creates a new file, custom-chart.js, where she will
write d3 code to display the custom visualization. In her JavaScript
she extends an IdyllD3 component1, and has it update the visu-
alization based on the mode parameter. As she makes changes to
the JavaScript, Idyll automatically refreshes her display so that the
latest version of the article and her custom code is always on-screen.

The developer is able to focus on writing code specific to a single
component on the page. She doesn’t need to write any code that
binds to an id in the article, or maintains application state, and
doesn’t have to write any code that listen for events, instead Idyll
handles all of this.

After she finishes the component, the developer runs a command
telling Idyll to compile the final output for publication. This com-
mand generates a folder containing an HTML, CSS, and JavaScript
file. She takes these files and uploads them to her organization’s
static file server. The article is now live on the internet and the
developer can move on to her next story.

3.2 The Internal Collaboration
This second use case considers Idyll in a larger organizational con-
text. Imagine a collaboration between an editor, a writer, and a

1For a full example of using Idyll with D3, see https://idyll-lang.github.io/
idyll-d3-component/.

https://idyll-lang.github.io/idyll-d3-component/
https://idyll-lang.github.io/idyll-d3-component/

Idyll: A Domain Specific Language for the Rapid Development of Interactive News ArticlesC+J 2017, October 2017, Chicago, Illinois, USA

newsroom developer. The three collaborators use Google Docs to
write and edit the text of an article using Idyll markup. Google
Docs provides functionality so that multiple people may edit and
comment on a document in real-time.

The developer runs a small script that keeps the text from the
document in sync with a local file, allowing him to pull in changes
to the text to his local computer. He uses the output of this script
as the input to Idyll, allowing changes to the document on Google
Docs to immediately be reflected in Idyll’s rendered output.

This group has used Idyll for several previous projects, and have
maintained a repository of useful components that they’ve created.
The developer has configured Idyll so that the components in this
internal repository are always available, so any of the collaborators
may add one of these components to the text by simply adding a
component tag.

For example, they could have a specific style of map that they
prefer to include. The writer could add it to the article by inserting
a tag:

[InHouseMap lat:47.6062 long:-122.3321 zoom:8 /]

The three collaborators have a detailed discussion about which
components would be most effective to include in this particular
article, and where they should be displayed. It is easy for any of
them to change the locations of the components in the document.
They decide on a configuration and realize that another custom
component will need to be written.

The developer writes the JavaScript for the new component, and
inserts the corresponding tag into the document. He also checks
that component into the internal repository so that it will be readily
available for future articles. When the document is complete, the
editor takes one final look at the text in the Google Doc. The de-
veloper then runs the command to compile the output, and pushes
the final package to a static hosting server.

4 DESIGN
Idyll emerged from the goal of designing a markup language that
would satisfy the following requirements:

• The markup should be clean enough that a non-technical
writer or editor could understand and edit it, and be extensi-
ble via JavaScript by programmers or designers.

• It should integrate well into existing workflows, and inte-
grate easily with popular existing tools (for example, D3).
To facilitate this, the output should be a complete web page
that can be published directly, or embedded in another page
via an iframe.

• The tool should eliminate as much boilerplate code as pos-
sible for techniques common in interactive articles, such as
reactive variables, and scroll-driven storytelling.

• The tool should eliminate the need for a complex JavaScript
build setup, and enable basic best practices by default (for
example, server-side rendering of static content, and code
minification).

These goals were synthesized through informal conversations
with journalists and web developers, and through the first author’s

experience developing news applications with FiveThirtyEight and
several other publications.

4.1 Examples
Figure 1 shows an overview of Idyll’s basic syntax. Idyll’s markup
allows users to concisely embed reactive variables in their text. This
is an example from Tangle’s documentation, recreated using Idyll:

[var name:"cookies" value:3 /]

When you eat [Dynamic value:cookies /] cookies,
you consume [Display value:`50 * cookies`] calories.

The above code displays the sentence "When you eat 3 cookies,
you consume 150 calories." The number 3 is dynamic, meaning that
a reader may change its value, updating the cookies variable, and
in turn updating the displayed number of calories consumed.

Idyll also makes it easy to load datasets and instantiate JavaScript
components. The following code parses a CSV file containing in-
formation about the water levels in Lake Huron. The first 10 rows
of the file are rendered in a table, and then a Vega-Lite component
is used to plot the water level of the lake over time in a line chart.

[data name:"lakeHuron" source:"lake-huron.csv" /]
[Table data:`lakeHuron.slice(0, 10)` /]
[VegaLite data:`lakeHuron` spec:`{

mark: "line",
encoding: {

x: { field: "time", type: "temporal" },
y: { field: "LakeHuron", type: "quantitative" }

}
}` /]

The remainder of this section gives an overview of the Idyll lan-
guage;more detailed documentation can be read online at https://idyll-
lang.github.io/.

4.2 Text
Anything written in an Idyll document is treated as text unless
otherwise specified. To make common formatting tasks easier, Idyll
borrows some shorthand syntax from Markdown.

• Italic - Text surrounded by a single asterisk (*) or underscore
(_) will be italicized.

• Bold - Text surrounded by two asterisks (**) or underscores
(__) will be boldface.

• Headers - Lines starting with a pound symbol (#) are ren-
dered as headings. The number of sequential pound symbols
determines the level of the heading.

• Links - links can be rendered with the following syntax:
[URL](link text).

• Images - Image can be rendered with the following syntax:
![Image URL](alt text).

• Code - Text placed between backticks (‘) will be displayed in-
line as code. Text placed between groups of three backticks

https://idyll-lang.github.io/
https://idyll-lang.github.io/

C+J 2017, October 2017, Chicago, Illinois, USA M. Conlen et al.

will be displayed as a code block. A language can be specified
and Idyll will automatically provide syntax highlighting.
```js
moveForward(100);
```

• Lists - Consecutive lines starting with an asterisk (*) form an
unordered list:. Consecutive lines beginning with numbers
followed by a period form an ordered list.

• Comments - Text placed after two forward slashes (//) will
be removed from the final output.

4.3 Reactive Variables, Datasets
Idyll implements a reactive variable system, meaning that users
can instantiate variables, and any time the value of one variable
changes, any values in the document depending on that variable
will immediately be updated as well.

Variables can be declared at any point in an Idyll file. Variables
are used to drive the behavior of components, which are introduced
in the next section. The following code defines a variable x, with
the initial value of 10.

[var name:"x" value:10 /]

Derived variables behave similarly to ordinary variables, but their
value is tied directly to the other variables and cannot be set directly.
Derived variables can be used like formulas in spreadsheet cells.

The following code defines a derived variable xSquared that
depends on the value of x. The value of xSquared is automatically
updated based on the value of x.

[derived name:"xSquared" value:`x * x` /]

Datasets are similar to variables, except their initial value is
populated from the contents of a CSV or JSON file.

[data name:"myData" source:"myData.csv" /]

4.4 Components
The final constituent of an Idyll document is the component. Com-
ponents provide the mechanism through which interactivity can be
added to an Idyll document. Adding a component to the document
will cause a corresponding JavaScript component to be instantiated.

Components are denoted with brackets, and can be invoked in
one of two ways: they can be self-closing, or have a closing and
opening tag surrounding content.

4.4.1 Built-in Components. Idyll includes a variety of basic
reusable components. These components may be divided into three
categories:

• Presentation components render something to the screen. Ex-
amples of this type include the button, chart, equation,
and slideshow components.

• Layout components manipulate how content is displayed on
the page. For example, the fixed component renders its

Figure 1: Example Idyll Markup
Article Title
Subtitle

Normal body text. **Bold text**.
A self-closing component:
[SelfClosingComponent /]

[OpenComponent]
An open component can modify the content
between its opening and closing tags.
[/OpenComponent]

contents fixed to a specific position on the page as a reader
scrolls.

• Helper components help with behind-the-scenes tasks like
adding social media share images and meta tags to the com-
piled output.

The components that were included with Idyll attempt to cover
a wide range of common use cases. They aim to allow users to
implement a variety of techniques common in interactive articles
without needing to write JavaScript. A full list of the available
components is available on the Idyll documentation website.

4.4.2 Third-Party Components. Users may also choose to use
components not included in the Idyll standard library. Custom com-
ponents may either be installed using npm, a popular JavaScript
package manager, or created locally. Because Idyll is implemented
using the React framework [2], any JavaScript modules that func-
tions as a React component will function as an Idyll component.
Users may choose to incorporate components from an existing set
of tens of thousands of open source options.

4.4.3 Component Properties. Properties may be passed to a com-
ponent in order to parameterize their behavior. Properties can be
passed into components in the following ways:

• Number, string, and boolean literals may be used:
[Component propName:10 /]
[Component propName:"propValue" /]
[Component propName:false /]

• A variable or dataset can be passed directly. If a variable
is passed, this will create a two-way binding between the
variable and the component. This means that if the variable
changes, then the component will immediately reflect that
change, and that the component is provided a mechanism
to manipulate the value of the variable and affect the docu-
ment’s state.

[Component propName:myVar /]

• An expression may be passed by using backticks.

[Component propName:`2 * 2 * 2` /]

Idyll: A Domain Specific Language for the Rapid Development of Interactive News ArticlesC+J 2017, October 2017, Chicago, Illinois, USA

[Component propName:`{ an: "object" }` /]
[Component propName:`2 * myVar` /]

All of the document’s variables are available in the scope of
the expression, so an expression can act as a function of a
variable. Because Idyll is reactive, if a variable changes any
expressions that reference that variable will immediately be
recomputed.
If the property defines an event handler, the expression is
evaluated each time the event occurs. This is convenient for
updating variables on events, for example.

[Component onClick:`myVar++` /]

4.5 Scroll Events
Idyll includes two utilities for allowing your document to respond to
the reader’s active location on the page. Any component that Idyll
renders will automatically have access to two events, onEnterView,
and onExitView. If you pass an expression to these handlers, the
expression will be evaluated when the component enters or leaves
the viewport of the reader.

The following code updates the style of a component when a
second component comes into view.

[var name:"x" value:0 /]
[Component style:`{opacity: x}` /]
[Component onEnteredView:`x = 1` /]

The Document Object Model (DOM) is an interface used to pro-
vide programmatic access in JavaScript to the elements rendered
from an HTML document. Idyll allows users to store references to
components’ corresponding nodes in the DOM, and access these
references in handler expressions. When a reference is created, Idyll
performs some basic calculations about the size and position of the
component, and where it is on the page relative to the viewport.

To create a reference, one can define the ref property on a
component. The following code updates the value of a property
of the second component based on how far the user has scrolled
through the contents of the first.

[Component
ref:"firstComponent" /]

[Component
propValue:`refs.firstComponent.scrollPropgress.y` /]

Each ref object has the following properties2:
domNode, scrollProgress, size, and position

4.6 Theming and Customization
Idyll exposes two methods for styling the final compiled output.
The layout option defines CSS styles that determine how content is
laid out on the page: article width, column position, and so on. The
theme option allows users to choose from several stylesheets that
2See https://idyll-lang.github.io/components-refs for a more detailed explanation.

modify the style of the content itself (text color, font, and so on).
Idyll provides several basic defaults of both layouts and themes, but
these are fully customizable by users.

Users can also customize the HTML container that the output
is rendered into. This is useful for users who wish to provide a
branded container that will wrap their content.

5 CONCLUSION
We have developed Idyll, a compile-to-the-web language for cre-
ating interactive narratives. Idyll was designed according to a set
of goals that were distilled from informal conversations with web
developers and journalists in addition to experiences working with
newsroom graphics production teams.

Idyll combines a human readable markup language with a frame-
work for embedding reactive JavaScript components in-line with
text and encodes a set of best practices for creating and deploying
interactive stories to the web. A goal of the project is to reduce the
amount of code that needs to be written to produce interactive arti-
cles. It also aims to enable a closer collaboration between technical
and editorial authors, and encourage development of components
that can more easily be reused across articles.

The project has been released as free and open source software,
and has been downloaded over 10,000 times [3] in the four months
between its initial release in April 2017 and the writing of this
paper.

REFERENCES
[1] 2008. Jekyll. (2008). Retrieved August 1, 2017 from https://jekyllrb.com/
[2] 2015. React. (2015). Retrieved August 1, 2017 from https://facebook.github.io/

react/
[3] 2017. Idyll download count. (2017). Retrieved August 1, 2017 from https:

//npm-stat.com/charts.html?package=idyll
[4] Eytan Adar, Carolyn Gearig, Ayshwarya Balasubramanian, and Jessica Hullman.

2017. PersaLog: Personalization of News Article Content. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM,
New York, NY, USA, 3188–3200. https://doi.org/10.1145/3025453.3025631

[5] Nokome Bentley. 2016. Stencila. (2016). Retrieved August 1, 2017 from https:
//stenci.la/

[6] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: Data-Driven
Documents. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis) (2011).
http://vis.stanford.edu/papers/d3

[7] John Gruber. 2004. Markdown. (2004). Retrieved August 1, 2017 from https:
//daringfireball.net/projects/markdown/syntax/

[8] Amit Kapoor. 2016. Visdown. (2016). Retrieved August 1, 2017 from http:
//visdown.amitkaps.com/

[9] Chris Olah and Shan Carter. 2017. Research Debt. Distill. Retrieved August 1,
2017 from http://distill.pub/2017/research-debt

[10] Fernando Pérez and Brian E. Granger. 2007. IPython: a System for Interactive
Scientific Computing. Computing in Science and Engineering 9, 3 (May 2007),
21–29. https://doi.org/10.1109/MCSE.2007.53

[11] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis) (2017). http://idl.cs.washington.edu/papers/
vega-lite

[12] Michael Strickland, Archie Tse, Matthew Ericson, and Tom Giratikanon. 2015.
Archie Markup Language (ArchieML). (2015). Retrieved August 1, 2017 from
http://archieml.org/

[13] NPR Visuals Team. 2014. Pym.js. (2014). Retrieved August 1, 2017 from http:
//blog.apps.npr.org/pym.js/

[14] Bret Victor. 2006. Magic Ink: Information Software and the Graphical Interface.
Retrieved August 1, 2017 from http://worrydream.com/MagicInk/

[15] Bret Victor. 2011. Explorable Explorations. Retrieved August 1, 2017 from
http://worrydream.com/ExplorableExplanations/

[16] Bret Victor. 2011. Scientific CommunicationAs Sequential Art. http://worrydream.
com/ScientificCommunicationAsSequentialArt/.

[17] Bret Victor. 2011. Tangle: a JavaScript library for reactive documents. Retrieved
August 1, 2017 from http://worrydream.com/Tangle/

https://idyll-lang.github.io/components-refs
https://jekyllrb.com/
https://facebook.github.io/react/
https://facebook.github.io/react/
https://npm-stat.com/charts.html?package=idyll
https://npm-stat.com/charts.html?package=idyll
https://doi.org/10.1145/3025453.3025631
https://stenci.la/
https://stenci.la/
http://vis.stanford.edu/papers/d3
https://daringfireball.net/projects/markdown/syntax/
https://daringfireball.net/projects/markdown/syntax/
http://visdown.amitkaps.com/
http://visdown.amitkaps.com/
http://distill.pub/2017/research-debt
https://doi.org/10.1109/MCSE.2007.53
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/vega-lite
http://archieml.org/
http://blog.apps.npr.org/pym.js/
http://blog.apps.npr.org/pym.js/
http://worrydream.com/MagicInk/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/Tangle/

	Abstract
	1 Introduction
	2 Related Work
	3 Usage Scenarios
	3.1 The Newsroom Developer
	3.2 The Internal Collaboration

	4 Design
	4.1 Examples
	4.2 Text
	4.3 Reactive Variables, Datasets
	4.4 Components
	4.5 Scroll Events
	4.6 Theming and Customization

	5 Conclusion
	References

