
10 Lessons from building video 

product tools in the newsroom. 
Pietro Passarelli 

Introduction 
In 2016 I did a 10-month Knight-Mozilla Fellowship organised by Open News with the Vox Media 
products team in New York. 

My interest was to explore possibilities for open source tools to help streamline the video production 
process. After spending a month interviewing and observing video producers across Vox Media, I 
narrowed my focus down to creating an application that enables more efficient and accessible video 
editing of interviews. 

The final product is autoEdit (Passarelli 2016a), a Mac OS X desktop app that creates automatic 
transcription from a video or audio file. The user can make text selections and export those 
selections as a video sequence to the editing software of choice. 

The success of autoEdit was beyond my expectation - it was downloaded over 700 times within the 
first three months after its launch. It is currently being used by video producers and journalists 
across the Vox Media brands, at the Financial Times, CUNY Journalism School, Holocaust Memorial 
Museum, and many other companies and organizations. 

Following are 10 lessons I learned from building video product tools in the newsroom. The 
knowledge and expertise that lead me to approach product design the way I do is the result of my 
unusual background. 

My education background includes a B.A. in Anthropology from Goldsmiths, University of London, a 
MA in Documentary Films from London College of Communication, and a Msc in Computer Science 
from University College London. My professional background is also a unique mix, I worked in 
documentary production for BBC, channel 4, and discovery channel, I also had the opportunity to 
work as a newsroom developer at The Times & Sunday Times in London, where I created 
quickQuote, a tool that automatically generates interactive video quotes, which won Guardian’s 
Student Media Startup of the year award in 2015, and worked with the Guardian Video team. 

In the following section, I am going to distill the key takeaways for journalists and developers 
interested in using user-centered design and rapid prototyping to create products that gain user 
traction. 



User Research 
One of the biggest challenges when doing research to develop a new product is how to get useful 
actionable intel from users while iteratively developing a prototype. 

Let’s consider a few key ideas that can help when defining a course of action. 

The Lean methodology, pioneered by Eric Ries(Ries 2011), defines an approach to startup and 
product development initially inspired by the Toyota quick cycle of manufacturing. The focus is on 
learning, and to iteratively define and test hypothesis to expand understanding of the users and the 
problem we are trying to solve, rather than on building and deploying a polished product. 

This goes hand in hand with the idea that there are going to be early adopters that you should spend 
some time identifying as a defined group and focus your initial research on (Blank and Dorf 2012) . 

The idea of “participant observation” is a key element of ethnographic research in anthropology. In 
social sciences context you don’t just observe, measure and quantify, instead, you need a better 
way to gather qualitative insights in a rigorous way. Participant observations consist in embedding 
yourself with the subjects you are studying, taking part in their routines and activities to better 
understand the world from their point of view, and see what that reveals to you about their 
knowledge systems and beliefs. 

As anthropologist Bill Watson, from Kent University, often says, anthropological research has also a 
strong emphasis on looking at “what people do do, and not what they say they do”. 

Closely linked with these ideas is the concept of “The Mum test” (Fitzpatrick 2013) . In a nutshell, it 
says that to get actionable insights to the users you have to root the questions in the past. Using 
past behavior as more reliable predictor of future decisions. And avoid asking leading questions. 

For example if you want to figure out if your users would be interested in using automated 
transcriptions as a part of their video workflow, Rather than asking “Would you use an app that does 
X & Y?” first things first, you’d have to learn about their current workflow. “Tell me about the last 
project you worked on, what was that like from start to finish?”. It is then down to you to drill down 
to the granularity that gives you the most insights. Then you can ask what the biggest bottleneck is 
and what the users have done to try and simplify things. 

In user-centered design approach, building personas should not feel like a chore. Personas are 
abstract representations of users that embodies some of the common characteristics shared across 
your pool of early adopters. These are useful in the development and prototyping stage, when 
defining non-functional requirements. 

For instance, asking the users about their work, and what gives them the most satisfaction and what 
the most tedious part is, is also a great way to get a more rounded sense of who they are and how 
they think about things. This will also come in handy when considering how to position the product 
to them in a relatable way. 

Last but not least, anthropologists would encourage you to have a healthy distrusts for 
questionnaires as a research methodology to gather insights. However, if you use the “Mum Test” 
when phrasing the questions, it can be a useful tool to identify early adopters. 



Be a domain expert, but if you are not that’s ok too. 
A domain expert is someone who has expertise in a certain field, knows and understands the 
intricacies of contradictory and conflicting theories in that field, and can juggle those in their mind. 

For example, a youtuber might be an expert in doing social videos, but if they don’t know about 
ethics and other epistemological implications of the medium, they might not be a domain expert in 
documentary production. 

If you are not a domain expert in the area where you are looking to use user-centered design to build 
a successful product, that’s ok too, there’s a few ways you can make up for that. 

Once you have defined the domain you are going to be exploring, the first thing to figure out is what 
are considered as best practices, “expert view” on the topic. For instance in the area of using 
transcriptions for video production, a paper-edit is still considered as the best practice although 
having fallen out of fashion because of the tedious and time-consuming process in its analogue 
form. 

You also need to identify out who is regarded as expert, what are the different school of thoughts, 
etc. Then as a separate step, find out how your users feel about these experts and school of 
thoughts, which one they respect, which one they dismiss, and why. For example, in the case of the 
paper-editing workflow, most video producers either do a simplified variation of it, or don’t do it 
because it is too time consuming. While sometimes video editors dismiss it as working with text not 
being visual enough for their liking. 

Observe and learn from your users. Don’t take their word at face value, they might not always know 
what’s best for them. In this sense there is a strong parallel to documentary production where you 
have to research, analyse, interpret and draw your own informed conclusion to define a course of 
action. For example one of the feedback I had from a video producer at Vox about autoEdit is that it 
“Goes above and beyond what I thought was possible”. 

Be language agnostic 
As a technologist, you should figure out the best technology to use for the problem you are trying to 
solve and to factor in the learning curve that comes with it. 

In computer science domain, It makes your life a lot easier if you have a focus on understanding the 
evergreen underlying knowledge, as it moves a lot slower than the latest hip framework that changes 
every 3 months. 

The tools and framework that we use shape the mental models we create to solve problems (Cook 
2017), and some might be more suited than others. For instance, in the first version of autoEdit 
(Passarelli 2016a) I used ruby on rails with SQL as a database. This lead me to model the 
transcription after a captions, srt file, with line level granularity, which had severe limitation when 
trying to select text at word level. However in autoEdit2, when working with node and nosql 
databases, it was easier to reason at a word level granularity and enable more possibility for digital 
paper-editing (Passarelli 2016b). 

As the popular saying goes “if you only have a hammer everything becomes a nail”. 



Last but not least, Eric Ries has also argued that, in line with user-centered design you should also 
start with the users and the problem they are facing rather than trying to fit a specific technology to a 
specific problem (Ries 2011). 

Map the problem domain 
I also found it particularly helpful to map the problem domain as a strategy to deal with ever 
changing requirements (Winder and Roberts 2006). 

“A problem domain is the context in which a particular problem exists. For example, the problem 
domain in which a specific route plan exists is that of maps, route planning, travelling and strategies 
for moving around. Critically, the problem domain is relatively stable, changing only slowly, while 
specific problems to be solved are transient and change regularly. If you are able to capture the 
problem domain as the core of the design of your program, then the program code is likely to be 
more stable, more reusable and more easily adaptable to specific problems as they come and go.” 
(Winder and Roberts 2006, 351) 

“Consider wanting to know how to travel from A to B. You could ask someone for a route plan and 
get a list of instructions containing statements such as ‘go to the end of the road, turn left, then turn 
right at the third turning on the left’, and so on. With a basic understanding of how each statement is 
interpreted (e.g. how to count turnings to find the third on the left), you can follow the instructions 
and get to your destination”.(Winder and Roberts 2006, 354) 

“A given route plan may work but it is very specific. To find out how to travel to a different 
destination you have to go and ask for a new list of instructions every time you want to travel. An 
alternative strategy for dealing with your travelling problem is to make use of a map. This will allow 
you to travel between any two points on the map and do your own route planning. The route 
planning can even be done while you are travelling. There is a cost for using the map, you have to 
learn how to read and interpret it, as well as develop strategies for planning routes. However, in the 
longer term the benefits more than outweigh the initial learning costs. Moreover, much more of the 
map strategy is reusable—it is easy to transfer the solution strategy from one problem to the next.” 
(Winder and Roberts 2006, 355) 

use component-based design 
Another helpful technique is that of component-based design when writing the code of your 
program (Winder and Roberts 2006) 

“A component is typically implemented by a small collection of classes, with one class acting as an 
interface to the component. Rather than designing a program from scratch, it can be built out of a 
set of predefined components which are linked together with small amounts of new code. This 
approach is termed component-based design. The connections between components are enabled 
using the mechanisms of inheritance, interfaces and dynamic binding. Users of the component make 
use of the public interface to call the component’s methods but need not be aware of the details of 
the component implementation.” 

(Winder and Roberts 2006, 265) 

Thinking in terms of reusable components has several advantages. For instance autoEdit “front end” 
is written in web technologies in such a way that the demo on the project website is the same code 
but with a hard coded database. This means that if I were to make a web version of the app I could 



reuse that part with minimal adjustments. It ultimately comes down to making a judgement call 
between premature optimization vs being strategic. Often a thin line. 

Use an R&D Approach 
Once you have got some findings from initial user research, you are ready to take the next step to 
identify, learn, and understand possible workflows. Then you can treat it almost like a lego project. 

For example, for autoEdit, an understanding of the paper-editing workflow and how the users relate 
to that and/or a variation of it was crucial. 

To get a better feel for this, I run a series of workshop on paper-editing, where participants were 
learning interview story crafting and I would get the type of insights you normally get through focus 
groups, focusing on the underlying workflow and not the app itself. (Passarelli 2017) (Passarelli 
2016c) 

Once you have the workflow figured out, next step is to divide it into parts. Of those parts identify 
the granularity of what are the components that make up that part. For those components, find out 
which ones you have available and to what degree you are familiar with their workings. 

As well as which ones you don’t know. Priority is given to the ones you don’t know to verify how 
they work and whether they make the whole possible. 

Once you have all the components you look at the interfaces and the communication between that, 
do you need to do any conversion or adjustment eg to get the output of one as input of the other 
etc.. This also helps you to think about data models representations that are most suited for the 
overall system. 

This allows to work on parts and components in isolation and then combined them. Don’t leave the 
combining and integration experiments too late tho because sometimes they are just as important as 
the building blocks. 

Threat everything as an hypothesis and prioritise which one to be tested first. 

Learn how to formulate questions as a way to get over 

unexpected roadblocks during development 
It is not a question if you are going to get stuck, but rather a matter of when. It is therefore important 
to think about how you are going to get yourself out of it and use your time productively. 

Face with an unexpected problem, think about what you know, the limits of what you know, what 
you don’t know and the limits of what you don’t know. Then describe what you know about the 
current setup, and inner workings. Describe the symptoms of what’s not working as expected. Write 
it all down. This takes you already half way to find a solution, as you can now share it and 
communicate with others more efficiently when asking for advice. It’s important to also spend some 
time identifying the right vocabulary to express the problem. You can then iteratively make 
hypothesis about the root cause, and run experiments to test it out. This will help you narrow it down 
until you find a solution. 



Be brave like Pixar 
I once watched this documentary about Pixar, The Pixar Story (Iwerks 2007), and was fascinated by 
how Toy Story team had the courage to throw away all the work just a couple of days before 
deadline, and started over from a blank canvas because the story and its main character was not 
quite working out. 

This might seem daunting but If you had mapped the problem domain, followed component-based 
architecture and user-centered design, you really are just throwing away only the material 
representation of your ideas. And you are actually in a good place to start over, with all the 
excitement and liberating anticipation of a blank canvas. 

Human vs machine? 
In the context of where to draw the line in the automation debate in replacing people’s jobs, 
especially with the recent buzz around AI, in studies that compared the performance of a team of 
humans, a team of “machines” and a mixed team of humans and computers, have found that the 
mixed team seems to consistently achieve the highest result (Allègre L and Matthias 2013). 

I’ve been dwelling on the ethical issues around the development of autoEdit, for a while now, there is 
a possibility that, especially if combined with more advanced cognitive services, it could replace 
video editors. 

After all IBM Watson can edit a video trailer (Smith 2016), with pretty good results. 

There are already examples of Earthquake bulletins written by machines without human review and 
the same has happened for economic reports (Jenkin 2016). 

In this context It’s important to recognise that there is always a bias, of some sort, gender, race etc.. 
of whoever wrote the algorithm (Devlin 2016) . 

In the current version of autoEdit, the aim was to remove the tedious parts of the paper-editing 
workflow to enable the video producers to concentrate on the story crafting. 

Convenience trumps quality every day of the week 
In certain contexts of automation, convenience seems to win over quality every day of the week. 
Increasingly leading to a polarized scenario with either high volume production with low quality 
output or low quality production with high volume distribution, and no room for anything in between. 

An example is the use of text to speech to to do voice over of videos, where quality of the speech to 
text services is not as good as human narrators but can scale faster and cheaper. 

In the interest of adding value for the users, I would argue it is your job as an application developer 
to address both convenience and quality. Identify convenience hooks to get traction with your users, 
but be concerned about raising quality of the output. Don’t expect an increase in quality to be 
sufficient for new user adoption, however counterintuitive this might seem. 

For example, with autoEdit the 5 minutes turnaround time for transcriptions is a very important cutoff 
point that was instrumental in gaining traction with early adopters. And even automated speech to 
text service alone is not as good quality compared to transcriptions services with 24 hours 



turnaround time with services that provide human or human + machine transcriptions. But the 
convenience wins over quality. And therefore some users will put up with the decrease in quality of 
the transcription they get for the added value of a fast turnaround. 

Conclusion 
In this article, we explored 10 lessons I learned from the development of autoEdit, and walked 
through how a mixed approach that combines lean, user-centered design and anthropological 
insights with key computer science techniques, such as mapping the problem domain and 
component-based design, can be instrumental in developing products that gain user traction. I 
would like to encourage readers to think deeper and further about how they can leverage some of 
the techniques I have explained to add value and increase quality of their products for their users. 

Bibliography 
Allègre L,. Hadida, and Seifert Matthias. 2013. “3 Humans + 1 Computer = Best Prediction.” 
https://hbr.org/2013/05/3-humans-1-computer-best-prediction. 

Blank, Steve, and Bob Dorf. 2012. The Startup Owner’s Manual: The Step-By-Step Guide for 
Building a Great Company. 1 edition. Pescadero, Calif: K & S Ranch. 

Cook, Blaine. 2017. “Annotations Models.” https://pietropassarelli.gitbooks.io/textav/problem-
domains/d83d-dd2a-2705-2b07-fe0f-annotations-models.html. 

Devlin, Hannah. 2016. “Discrimination by Algorithm: Scientists Devise Test to Detect AI Bias 
Technology The Guardian.” https://www.theguardian.com/technology/2016/dec/19/discrimination-
by-algorithm-scientists-devise-test-to-detect-ai-bias. 

Fitzpatrick, Rob. 2013. The Mom Test. 1 edition. CreateSpace Independent Publishing Platform. 

Iwerks, Leslie. 2007. “The Pixar Story: Leslie Iwerks: Amazon Digital Services LLC.” 
https://www.amazon.com/Pixar-Story-Leslie-
Iwerks/dp/B006DQP64A/ref=sr_1_fkmr0_1?ie=UTF8&qid=1501371860&sr=8-1-
fkmr0&keywords=The+Pixar+Story+documentary+dvd. 

Jenkin, Matthew. 2016. “Written Out of the Story: The Robots Capable of Making the News 
Guardian Small Business Network The Guardian.” https://www.theguardian.com/small-business-
network/2016/jul/22/written-out-of-story-robots-capable-making-the-news. 

Passarelli, Pietro. 2016a. “autoEdit.” www.autoEdit.io. 



———. 2016b. “autoEdit User Manual.” https://pietropassarelli.gitbooks.io/autoedit2-user-
manual/content/paperediting.html. 

———. 2016c. “How to Craft Compelling Stories Out of Video Interviews?” 
http://pietropassarelli.com/wip_london_july2016.html. 

———. 2017. How to Tell Compelling Stories Out of Video Interviews. 
https://www.gitbook.com/book/pietropassarelli/how-to-tell-compelling-stories-out-of-video-inter/. 

Ries, Eric. 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create 
Radically Successful Businesses. 1 edition. New York: Crown Business. 

Smith, John R. 2016. “IBM Research Takes Watson to Hollywood with the First ‘Cognitive Movie 
Trailer’ - THINK Blog.” https://www.ibm.com/blogs/think/2016/08/cognitive-movie-trailer/. 

Winder, Russel, and Graham Roberts. 2006. Developing Java Software. 3 edition. Chichester, UK ; 
Hoboken, NJ: Wiley. 


